Share Email Print
cover

Proceedings Paper

Smart photonic networks and computer security for image data
Author(s): Jorge Campello; John T. Gill; Martin Morf; Michael J. Flynn
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.

Paper Details

Date Published: 1 February 1998
PDF: 8 pages
Proc. SPIE 3228, Multimedia Networks: Security, Displays, Terminals, and Gateways, (1 February 1998); doi: 10.1117/12.300897
Show Author Affiliations
Jorge Campello, Stanford Univ. (United States)
John T. Gill, Stanford Univ. (United States)
Martin Morf, Stanford Univ. (United States)
Michael J. Flynn, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 3228:
Multimedia Networks: Security, Displays, Terminals, and Gateways
Louis S. Lome; V. Michael Bove; Barbara Derryberry; Clifford R. Holliday; Louis S. Lome; Vishal Markandey; Andrew G. Tescher; Bhaskaran Vasudev, Editor(s)

© SPIE. Terms of Use
Back to Top