Share Email Print
cover

Proceedings Paper

Estimation of error diffusion kernel using genetic algorithm
Author(s): Seung-Ho Park; Ki-Min Kang; Choon-Woo Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Error diffusion technique has been one of the most popular digital image halftoning methods. The quality of binary image resulting from the error diffusion technique is affected by the following three key factors; the values of error diffusion kernel, the locations of neighboring pixels for error propagation, and the quantization scheme. Among these factors, this paper is focused on the estimation of the values of error diffusion kernel. In previous efforts to propose modification to the original Floyd-Steinberg's algorithm, the values of error diffusion kernel have been determined by the trial and error method or by utilizing optimization techniques such as the least mean square estimation and neural network methods. This paper presents a new estimation method for the values of error diffusion kernel based on the genetic algorithm. Compared to the conventional optimization techniques, the genetic algorithm based approach lifts restrictions on the complexity of the error criterion for optimization. In this paper, two types of the error criteria are defined to improve image quality. They represent a measure of the reproduction of average brightness and an extent of undesirable artifacts appeared on the binary image for specific gray levels. The values of error diffusion kernel are estimated by simultaneously minimizing the defined error criteria using genetic algorithm. In the experiments, three types of error diffusion kernel are examined. The experimental results indicate that the binary images obtained based on the estimated error diffusion kernel exhibit less artifacts.

Paper Details

Date Published: 2 January 1998
PDF: 11 pages
Proc. SPIE 3300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III, (2 January 1998); doi: 10.1117/12.298296
Show Author Affiliations
Seung-Ho Park, Inha Univ. (South Korea)
Ki-Min Kang, Inha Univ. (South Korea)
Choon-Woo Kim, Inha Univ. (South Korea)


Published in SPIE Proceedings Vol. 3300:
Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III
Giordano B. Beretta; Reiner Eschbach, Editor(s)

© SPIE. Terms of Use
Back to Top