Share Email Print
cover

Proceedings Paper

Automated assembly of micro-optical components
Author(s): Ramona Eberhardt; Torsten Scheller; Guenther Tittelbach; Volker Guyenot
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In the field of microsystem technologies one future trend is recognized. Manufacturing microsystems monolithically is becoming less reasonable and practicable with increasing applications and complexity. Assembly processes will be needed for the majority of microsystems due to difficulties arising in manufacturing complex structure out of one piece, the need for components to be manufactured by different processes, or simply to connect the microsystem with the macroscopic environment. Additionally, high production output at competitive costs is attainable only by replacing manual assembly with new automatic handling, positioning and joining technologies. To assist in development of microassembly processes, techniques from macroassembly technology may be transferred. Especially in microoptics existing know-how from macroscopic lens-assemblies might be transferred. The microsystem presented a microoptical beam forming system consisting of one SELFOC- and two GRIN- microlenses joined by adhesive bonding, fixed in a protection-mount, which serves additionally as a coupling unit of a multimode fiber, and finally adjusted to a laser diode at a defined distance according to an optical design. Besides complications due to the sensitive optical surfaces and the small and varying geometries of the system components, there is the additional requirement of high accuracies, of 0.1 to 2 micrometers and down to 1 arcsec, needed to realize the optical function of the microsystem. The assembly system, based on a six-axis-precision robot accurate to less than 1 micrometers , consists of a modular designed tool changing system, specially-adapted, self- adjusting grippers, several sensors to monitor positioning, dosage devices to dispense measured quantities of adhesive, in the range of nanoliters, and a specially designed assembly platform to clamp microparts of different geometries.

Paper Details

Date Published: 1 January 1998
PDF: 11 pages
Proc. SPIE 3202, Microrobotics and Microsystem Fabrication, (1 January 1998); doi: 10.1117/12.298029
Show Author Affiliations
Ramona Eberhardt, Fraunhofer-Institute for Applied Optics and Precision Engineering (Germany)
Torsten Scheller, Fraunhofer-Institute for Applied Optics and Precision Engineering (Germany)
Guenther Tittelbach, Fraunhofer-Institute for Applied Optics and Precision Engineering (Germany)
Volker Guyenot, Fraunhofer-Institute for Applied Optics and Precision Engineering (Germany)


Published in SPIE Proceedings Vol. 3202:
Microrobotics and Microsystem Fabrication
Armin Sulzmann, Editor(s)

© SPIE. Terms of Use
Back to Top