Share Email Print

Proceedings Paper

Surface-figuring CVD-SiC mirrors with a five-axis-control ultraprecision grinding machine
Author(s): Yoshiharu Namba; Hiroshi Suzuki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A large 5-axis control ultraprecision grinding machine has been developed for making synchrotron-radiation mirrors with high accuracy. The positional and angular resolutions of the machine are 10 nm and 0.0002 degree, respectively. The dimensions of the machine are 3.3 m by 2.7 m by 4.4 m in height. The machine can generate non-axisymmetric aspheric surfaces on CVD-SiC material by a disc-type metal-bonded diamond wheel. An electric micrometer has been set near a grinding head for measuring the form error of ground surface in conformity with the machine movement due to the cutter location data. A series of the measured form errors corrects the former cutter location data automatically and the next grinding operation will be performed by the new cutter location data. A CVD-SiC material of 510 mm by 110 mm was ground into a toroidal surface of 750 nm in shape accuracy by the fifth grinding operation with the fourth correction of cutter location data. More than 99% of toroidal surface area have a form accuracy less than 500 nm. 3.3 nm rms surface roughness was obtained by the ultraprecision grinding using a SD4000N150M metal-bonded diamond wheel.

Paper Details

Date Published: 1 November 1997
PDF: 8 pages
Proc. SPIE 3152, Materials, Manufacturing, and Measurement for Synchrotron Radiation Mirrors, (1 November 1997); doi: 10.1117/12.295565
Show Author Affiliations
Yoshiharu Namba, Chubu Univ. (Japan)
Hiroshi Suzuki, Toyoda Machine Works, Ltd. (Japan)

Published in SPIE Proceedings Vol. 3152:
Materials, Manufacturing, and Measurement for Synchrotron Radiation Mirrors
Peter Z. Takacs; Thomas W. Tonnessen, Editor(s)

© SPIE. Terms of Use
Back to Top