Share Email Print
cover

Proceedings Paper

Analysis of single mirror surface for correcting line-scanning distortion
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The control of optical distortion is useful for the design of a variety of optical systems especially those used for laser scanning. The optics used for focusing a laser beam onto a flat image field must satisfy the f-(theta) condition (the image height is proportional to the input field angle) to produce a constant scan velocity across the image plane. We analyze and compared the optical performances produced by several single surface reflector as line scanning distortion corrector. Our guideline is a distortion less than 0.1% typically used in the industry. For particular reflector we are always able to find the right position for the scanning mirror to produce in the image field a correct scan line. Our results show a linear dependence of the maximum scanning angle which the errors is less than 0.1% and the scanning beam f- number. At the same time, the mirror f-number is inversely proportional to the scanning beam f-number. Then bigger is the mirror f/#, smaller is the size of the scanning spot and the scan angle. We compute four graphs that can be used easily and gives a complete picture of the performance produced from a single reflecting surface as distortion corrector.

Paper Details

Date Published: 10 December 1997
PDF: 7 pages
Proc. SPIE 3204, Three-Dimensional Imaging and Laser-based Systems for Metrology and Inspection III, (10 December 1997); doi: 10.1117/12.294449
Show Author Affiliations
Simon Thibault, National Optics Institute (Canada) and Univ. Laval (Canada)
Stan Szapiel, COM DEV Ltd. (Canada)


Published in SPIE Proceedings Vol. 3204:
Three-Dimensional Imaging and Laser-based Systems for Metrology and Inspection III
Kevin G. Harding; Donald J. Svetkoff, Editor(s)

© SPIE. Terms of Use
Back to Top