Share Email Print

Proceedings Paper

Self-powered discrete time piezoelectric vibration damper
Author(s): Michael J. Konak; Ian G. Powlesland; Stephen P. van der Velden; Stephen C. Galea
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Structural vibration suppression is of great interest to the aircraft industry as it can reduce the amplitude of excessive vibration in lightly damped panels caused by conditions in their operational environment. One technique of suppressing vibration is to use passive damping techniques such as constrained layered damping incorporating viscoelastic materials. However these techniques may not be acceptable because of weight concerns or extreme temperature variations. Over the past decade much work has been done by researchers on the use of piezoelectric ceramic devices, using passive and active techniques, for structural vibration suppression. The passive piezoelectric damping devices consist of a piezoelectric element and either a resistive or resonant shunt. The resonant circuit shunt, which is analogous to a mechanical vibration absorber, gives better vibration reduction compared to the resistor shunt. This device requires a large value of inductance in order to be tuned to a particular structural vibration mode. A large value inductor can be made by a using a gyrator type circuit however the circuit needs external power. A method of vibration control using a discrete time controller and piezoelectric devices is presented. That is, this paper describes the concept of a self-powered discrete time piezoelectric vibration damper which does not need tuning to the structural resonant frequency and is powered by piezoelectric elements, i.e. does not need an external power supply. This device is referred to as a strain amplitude minimization patch (STAMP) damper. A brief description of the theory used and of the scheme is presented. Also the operation of this device is compared with other 'passive' techniques, involving piezoelectric elements, such as the resistive passive damper and the parallel resonant passive damper cases. Experimental results presented, on a cantilevered beam, demonstrate the concept and show that the device, even in its current underdeveloped form, has better damping than the simple resistor damper. Measurements taken indicate that the maximum RMS tip accelerations, at resonance, are reduced by 17.3%, 62.7% and 39.5% for the resistor, parallel resonant and STAMP damper devices, respectively, when compared to the short circuit reference condition. The performance of each device is observed when the resonant frequency of the system changes when a mass is added to the tip of the cantilever. This paper also discusses areas where improvements in the performance of the STAMP damper can be achieved.

Paper Details

Date Published: 14 November 1997
PDF: 10 pages
Proc. SPIE 3241, Smart Materials, Structures, and Integrated Systems, (14 November 1997); doi: 10.1117/12.293506
Show Author Affiliations
Michael J. Konak, Defence Science and Technology Organisation (Australia)
Ian G. Powlesland, Defence Science and Technology Organisation (Australia)
Stephen P. van der Velden, Defence Science and Technology Organisation (Australia)
Stephen C. Galea, Defence Science and Technology Organisation (Australia)

Published in SPIE Proceedings Vol. 3241:
Smart Materials, Structures, and Integrated Systems
Alex Hariz; Vijay K. Varadan; Olaf Reinhold, Editor(s)

© SPIE. Terms of Use
Back to Top