Share Email Print

Proceedings Paper

Scalable and reconfigurable wide-area lightwave network architecture (hypercluster): performance results
Author(s): Duanyang Guo; Anthony S. Acampora; Zhensheng Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In reference one, a network architecture called hyper-cluster employing wavelength-routing, multi-hop packet switching and optical reconfiguration is presented. It is modularly scalable to very large configurations on both hardware and operational bases. A hyper-cluster uses a logical hierarchy for the purpose of addressing but guarantees that all access nodes have a constant number of transceivers. It is a cluster of regular graphs; the clustering structure follows the traffic distribution in a grand granularity. The issue of operational scalability is addressed by presenting a scalable routing protocol and a scalable reconfiguration protocol. When using shuffle-net as the building block, a novel routing scheme called quantified deflection routing is presented. The scheme improves call blocking performance significantly. In this paper, we propose a distributed reconfiguration protocol. The network throughput and virtual call blocking performance is obtained via simulation on large networks (with size beyond 200 nodes). Numerical results show that the dynamic self- routing protocol, combined with quantified deflection routing for shuffle-net, can achieve excellent resource utilization efficiency for very large networks. When the call arrival rate is below 0.3, the capacity provided by the hyper-cluster dynamic routing algorithm is close to that of an infinite capacity centralized switch (lowest possible call blocking caused exclusively by congestion on the finite capacity user input/output links, never by the switch fabric itself).

Paper Details

Date Published: 10 October 1997
PDF: 12 pages
Proc. SPIE 3230, All-Optical Communication Systems: Architecture, Control, and Network Issues III, (10 October 1997); doi: 10.1117/12.290391
Show Author Affiliations
Duanyang Guo, Citicorp Securities, Inc. (United States)
Anthony S. Acampora, Univ. of California/San Diego (United States)
Zhensheng Zhang, Lucent Technologies Bell Labs. (United States)

Published in SPIE Proceedings Vol. 3230:
All-Optical Communication Systems: Architecture, Control, and Network Issues III
John M. Senior; Robert A. Cryan; Chunming Qiao, Editor(s)

© SPIE. Terms of Use
Back to Top