Share Email Print
cover

Proceedings Paper

Scaling rules for quintic refractive index matching semi-infinite-band antireflection coatings
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An inhomogeneous refractive index layer that follows a specific quintic (fifth-order polynomial) profile that smoothly matches the two-media interface is known to drastically reduce the nominal Fresnel reflection at this interface. There is so short wavelength cutoff for a quintic (or quintic-like) layer, as the reflectance continues to decrease with decreasing wavelength. Thus the quintic matching layer is a semi-infinite band antireflection coating. Furthermore, at the long wavelength end of the spectra the reflectance never rises above that of the Fresnel reflection at the bare interface, a feature not shared by multilayers optimized over specific bandwidths. A scaling relationship that relates the long wave cutoff of the total optical thickness of the quintic layer needed for a given reflectance level and for a given difference in media refractive index is described. For example, a quintic layer whose optical thickness is two waves or four halfwaves (at the longest wavelength of the band) will reflect at least four orders of magnitude less than the reflectance of the bare interface for all lower wavelengths. This paper also compares a quintic layer which is inhomogeneous to a needle-optimized multilayer design.

Paper Details

Date Published: 1 October 1997
PDF: 6 pages
Proc. SPIE 3133, Optical Thin Films V: New Developments, (1 October 1997); doi: 10.1117/12.290202
Show Author Affiliations
William H. Southwell, Rockwell Science Ctr. (United States)


Published in SPIE Proceedings Vol. 3133:
Optical Thin Films V: New Developments
Randolph L. Hall, Editor(s)

© SPIE. Terms of Use
Back to Top