Share Email Print

Proceedings Paper

Symmetry breaking as a model for emergent structure of heterogeneous networked robotic agents
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper explores the design of robot systems to take advantage of non-linear dynamic systems models, specifically symmetry breaking phenomena, to self-organize in response to task and environment demands. Recent research in the design of robotics systems has stressed modular, adaptable systems operating under decentralized and distributed control architectures. Cooperative and emergent behavioral structures can be built on these modules by exploiting various forms of communication and negotiation strategies. We focus on the design of individual modules and their cooperative interaction. We draw on nonlinear dynamic system models of human and animal behavior to motivate issues in the design of robot modules and systems. Sonar sensing systems comprising a ring of sonar sensors are used to illustrate the ideas within a networked robotics context, where distributed sensing modules located on multiple robots can interact cooperatively to scan an environment.

Paper Details

Date Published: 22 September 1997
PDF: 9 pages
Proc. SPIE 3209, Sensor Fusion and Decentralized Control in Autonomous Robotic Systems, (22 September 1997); doi: 10.1117/12.287642
Show Author Affiliations
Gerard T. McKee, Univ. of Reading (United Kingdom)
Paul S. Schenker, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 3209:
Sensor Fusion and Decentralized Control in Autonomous Robotic Systems
Paul S. Schenker; Gerard T. McKee, Editor(s)

© SPIE. Terms of Use
Back to Top