Share Email Print

Proceedings Paper

Comparative study of two different multiple-expert architectures for robust object recognition
Author(s): A. Fuad R. Rahman; Michael C. Fairhurst
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A generalized application area of machine vision is in the classification of different objects based on specified criteria. Applications of this nature are encountered more and more often in real industrial situations and the need to design robust classification architectures is now being felt more intensely than ever before. In designing such systems, it is being increasingly realized that judicious combination of multiple experts forming an integral configuration can achieve a higher overall performance than any of the individual experts on its own. Many configurations, taking advantage of different individual strengths of different experts, have been investigated. One particular class of structure seeks to exploit the a priori knowledge about the behavior of a particular basic classifier on a particular reference data base and uses that information to form a hierarchical classification structure that treats the structurally similar and dissimilar objects separately. The basic classifier performs an initial separation of the input objects. Based on a priori knowledge, initially separated objects are regrouped to form structurally similar groups, incorporating objects that have a high probability of being confused. A number of such groups having two or three classes in each group can be formed. The structurally dissimilar objects are classified using a generalized classifier. On the other hand, the different groups formed in the previous stage undergo group- wise classification. The final decision of the classifier structure is formed by combining the decisions of the generalized classifier and the specialized group-wise classifiers.

Paper Details

Date Published: 18 September 1997
PDF: 10 pages
Proc. SPIE 3205, Machine Vision Applications, Architectures, and Systems Integration VI, (18 September 1997); doi: 10.1117/12.285576
Show Author Affiliations
A. Fuad R. Rahman, Univ. of Kent at Canterbury (United Kingdom)
Michael C. Fairhurst, Univ. of Kent at Canterbury (United Kingdom)

Published in SPIE Proceedings Vol. 3205:
Machine Vision Applications, Architectures, and Systems Integration VI
Susan Snell Solomon; Bruce G. Batchelor; John W. V. Miller, Editor(s)

© SPIE. Terms of Use
Back to Top