Share Email Print
cover

Proceedings Paper

Process gases for laser welding
Author(s): Mark Faerber; Joachim Berkmann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

To achieve a high return on investment, laser systems must be used to their fullest capacity, avoiding power losses and downtimes. High-quality laser gases are therefore needed to run the laser. But if the quality of the gas cannot be guaranteed all the way from the cylinder to the laser cavity, the risk of impurities such as water vapor and hydrocarbons or particles entering the laser system is large. Unstable laser operation and damage to the resonator optics can result in costly repairs. The profitability of laser operations is also affected by the selection of the assist gas. High-purity oxygen and high-pressure high-purity nitrogen are frequently used to optimize the productivity of laser cutting. In contrast, different assist gases are used for laser welding depending on the wavelength of the laser radiation, the material, the energy per unit length of weld or the assist gas nozzle arrangement. Helium is often the most convenient choice for CO2 laser welding of mild steel, resulting in optimum seam quality with respect to formability and appearance. Helium-argon mixtures can be used effectively for lower power CO2 laser welding and for aluminum. Nitrogen mixtures may be used to stabilize the austenitic phase in duplex steels whereas hydrogen additions give a shiny bead surface in stainless steel. Argon is suitable for Nd:YAG laser welding and productivity is increased by small additions of oxygen. In addition argon- CO2 mixtures may be used to achieve acceptable results depending on the assist gas nozzle arrangement. Consequently, high-purity gases and suitable gas distribution equipment are the basis for a satisfactory return on investment.

Paper Details

Date Published: 18 August 1997
PDF: 6 pages
Proc. SPIE 3097, Lasers in Material Processing, (18 August 1997); doi: 10.1117/12.281131
Show Author Affiliations
Mark Faerber, AGA Gas (Germany)
Joachim Berkmann, AGA Gas (Germany)


Published in SPIE Proceedings Vol. 3097:
Lasers in Material Processing
Leo H. J. F. Beckmann, Editor(s)

© SPIE. Terms of Use
Back to Top