Share Email Print

Proceedings Paper

Model-based sensor rendering for a DIS multisensor airborne surveillance platform
Author(s): John D. Roberts; John J. Santapietro
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper reports on the continuing development of a DIS- compliant model for an airborne platform carrying a multisensor payload. This payload consists of a moving target indicator (MTI) radar, a cooperative battlefield combat identification system (BCIS), and imaging sensors. The imaging sensors are a synthetic aperture radar (SAR) and a forward looking infrared (FLIR) imager. The entire platform model is an extension to the ModSAF environment. The sensor model code is fully portable and integrated as ModSAF libraries. Relevant emission protocol data units (PDU) are generated and transmitted. The overall simulation architecture and the MTI and BCIS models have been described in detail elsewhere. The current work concentrates on the development of real-time model-based imaging functions. The software tools which provide this capability are available both in the government- owned inventory and as commercial products. The purpose of the current activity is to investigate the feasibility of integrating software of this kind with the ModSAF environment in order to produce realistic target/scene rendering similar to those obtained by high-resolution imaging sensors. To this end, we investigated real-time scene generation using two approaches. The first, through integration of the IRMA software package developed and distributed by the USAF Wright Laboratories, Eglin AFB, and the second is by use of the commercial software package SensorVisionTM, which is marketed and distributed by Paradigm Solutions, Inc. Both of these produce scene renderings in user specified wavebands by combining entity state PDU information with terrain data. The scene model information is passed to rendering software to produce an IR or SAR rendering of the scene.

Paper Details

Date Published: 15 July 1997
PDF: 9 pages
Proc. SPIE 3085, Modeling, Simulation, and Visualization of Sensory Response for Defense Applications, (15 July 1997); doi: 10.1117/12.280990
Show Author Affiliations
John D. Roberts, MITRE Corp. (United States)
John J. Santapietro, MITRE Corp. (United States)

Published in SPIE Proceedings Vol. 3085:
Modeling, Simulation, and Visualization of Sensory Response for Defense Applications
John D. Illgen; Nickolas L. Faust; John D. Illgen, Editor(s)

© SPIE. Terms of Use
Back to Top