Share Email Print
cover

Proceedings Paper

Measurement models for ambiguous evidence using conditional random sets
Author(s): Ronald P. S. Mahler
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In several recent papers we have shown how random set theory provides a theoretically rigorous foundation for much of data fusion. An important missing piece in our approach has been the problem of how to incorporate observations which are ambiguous (e.g. imprecise, fuzzy/vague, contingent, etc.) into conventional Bayesian estimation and filtering theory. If one can do this, the fusion of imprecise observations with ambiguous observations, generated by dynamic (i.e., moving) targets, becomes possible using a familiar Bayes-Markov nonlinear filtering approach. This paper sketches the basis for fusion if one assumes that both observation space and state space are finite.

Paper Details

Date Published: 28 July 1997
PDF: 12 pages
Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, (28 July 1997); doi: 10.1117/12.280829
Show Author Affiliations
Ronald P. S. Mahler, Lockheed Martin Tactical Defense Systems (United States)


Published in SPIE Proceedings Vol. 3068:
Signal Processing, Sensor Fusion, and Target Recognition VI
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top