Share Email Print

Proceedings Paper

Improved object segmentation using Markov random fields, artificial neural networks, and parallel processing techniques
Author(s): Stephen B. Foulkes; David M. Booth
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Object segmentation is the process by which a mask is generated which identifies the area of an image which is occupied by an object. Many object recognition techniques depend on the quality of such masks for shape and underlying brightness information, however, segmentation remains notoriously unreliable. This paper considers how the image restoration technique of Geman and Geman can be applied to the improvement of object segmentations generated by a locally adaptive background subtraction technique. Also presented is how an artificial neural network hybrid, consisting of a single layer Kohonen network with each of its nodes connected to a different multi-layer perceptron, can be used to approximate the image restoration process. It is shown that the restoration techniques are very well suited for parallel processing and in particular the artificial neural network hybrid has the potential for near real time image processing. Results are presented for the detection of ships in SPOT panchromatic imagery and the detection of vehicles in infrared linescan images, these being a fair representation of the wider class of problem.

Paper Details

Date Published: 28 July 1997
PDF: 12 pages
Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, (28 July 1997); doi: 10.1117/12.280826
Show Author Affiliations
Stephen B. Foulkes, Defence Research Agency Malvern (United Kingdom)
David M. Booth, Defence Research Agency Malvern (United Kingdom)

Published in SPIE Proceedings Vol. 3068:
Signal Processing, Sensor Fusion, and Target Recognition VI
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top