Share Email Print
cover

Proceedings Paper

Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association
Author(s): Donald B. Malkoff
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.

Paper Details

Date Published: 28 July 1997
PDF: 12 pages
Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, (28 July 1997); doi: 10.1117/12.280801
Show Author Affiliations
Donald B. Malkoff, Lockheed Martin Advance Technology Labs. (United States)


Published in SPIE Proceedings Vol. 3068:
Signal Processing, Sensor Fusion, and Target Recognition VI
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top