Share Email Print
cover

Proceedings Paper

Integrated electronic circuits and devices based on interactive paper
Author(s): Francis Garnier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Various organic conjugated materials, e.g. conjugated polymers and short conjugated oligomers, have been up to now proposed as active semiconducting layers in organic-base devices, such as thin film transistors, TFTs, or light emitting diodes. The mode of operation of TFTs shows that a high carrier mobility together with a low conductivity are required for their figure of merit. Experimental results from literature indicate that, whereas conjugated polymers exhibit a low carrier mobility, of the order of 10-4 to 10-5 cm2V-1s-1, conjugated oligomers appear much more promising. It is thus shown that carrier mobility is directly related to the long range structural order in conjugated oligomer films, i.e. to the decrease of grain boundaries, leading to values of the order of 10-1 cm-2V-1s-1, comparable to that of amorphous hydrogenated silicon. Conjugated oligomers are well defined materials, offering various physical and chemical ways for control of the structural organization of thin films made from them. Besides, conductivity in thin films of conjugated oligomers is mainly determined by the purity of the materials, allowing values lower than 10-7 Scm-1, with a high on/off ratio. The low melting and evaporation temperatures of conjugated oligomers, together with the solubility of some of these materials, allows the construction of TFTs by the use of room temperature techniques, following a process compatible with paper technology.

Paper Details

Date Published: 4 August 1997
PDF: 16 pages
Proc. SPIE 3227, Interactive Paper, (4 August 1997); doi: 10.1117/12.280777
Show Author Affiliations
Francis Garnier, Lab. des Materiaux Moleculaires (France)


Published in SPIE Proceedings Vol. 3227:
Interactive Paper
Graham G. Allan; Jean J. Robillard, Editor(s)

© SPIE. Terms of Use
Back to Top