Share Email Print
cover

Proceedings Paper

Toward large-scale solar energy systems with peak concentrations of 20,000 suns
Author(s): Abraham Kribus
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.

Paper Details

Date Published: 3 October 1997
PDF: 8 pages
Proc. SPIE 3139, Nonimaging Optics: Maximum Efficiency Light Transfer IV, (3 October 1997); doi: 10.1117/12.279213
Show Author Affiliations
Abraham Kribus, Weizmann Institute of Science (Israel)


Published in SPIE Proceedings Vol. 3139:
Nonimaging Optics: Maximum Efficiency Light Transfer IV
Roland Winston, Editor(s)

© SPIE. Terms of Use
Back to Top