Share Email Print
cover

Proceedings Paper

Projecting multichannel acousto-optic cells with low crosstalk
Author(s): Victor V. Kludzin; Sergei V. Kulakov; Victor V. Molotok
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An acousto-optic method for spectral processing of rf signals is proposed. This method is based on a multichannel cell with frequency separated channels within a given band. The optimum structure of such a system is a multichannel cell with the slow shear mode in the (110) direction in TeO2 and far- axis anisotropic diffraction. A system with 12 channels covering the frequency band of 84 - 96 MHz with the bandwidth of each channel of approximately 0.5 MHz and frequency separation of approximately 1 MHz is experimentally studied. An optical beam which spreads in the plane orthogonal to that of the acousto-optic interaction must be used in this system. The influence of the transducer electrode shape on the acoustic crosstalk in the adjacent channels is studied. The experimental results are in good agreement with the calculated data. The expansion of acousto-optic processing requires that multichannel acousto-cells be used. Narrow-band acousto-optic interaction regimes can be used for frequency-domain filtering of rf signals in multichannel cells. This scheme can be used for the parallel analysis of an rf signal spectrum. This paper describes the process of the design and manufacturing of a multichannel acousto-optic filter for an rf signal with a narrow bandwidth of each channel and estimates its possible parameters. Each channel of the filter is tuned to its own frequency different from those of the adjacent channels within a given overall bandwidth of the whole device.

Paper Details

Date Published: 22 September 1997
PDF: 4 pages
Proc. SPIE 3137, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III, (22 September 1997); doi: 10.1117/12.279177
Show Author Affiliations
Victor V. Kludzin, St. Petersburg State Academy of Aerospace Instrumentation (Russia)
Sergei V. Kulakov, St. Petersburg State Academy of Aerospace Instrumentation (Russia)
Victor V. Molotok, St. Petersburg State Academy of Aerospace Instrumentation (Russia)


Published in SPIE Proceedings Vol. 3137:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications III
Francis T. S. Yu; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top