Share Email Print

Proceedings Paper

Robust control of the MMT adaptive secondary mirror
Author(s): Simon C. O. Grocott; David W. Miller
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For force-actuated, thin facesheet mirrors, structural flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the entire surface of a deformable mirror. A linearized model of atmospheric distortion is combined with these dynamic influence functions to produce a dynamic reconstructor for providing actuator inputs in response to wavefront sensor measurements. This dynamic reconstructor is recognized as an optimal control problem. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive to errors than the hierarchic technique because it incorporates a dynamic model of the deformable mirror.

Paper Details

Date Published: 17 October 1997
PDF: 12 pages
Proc. SPIE 3126, Adaptive Optics and Applications, (17 October 1997); doi: 10.1117/12.279052
Show Author Affiliations
Simon C. O. Grocott, Massachusetts Institute of Technology (United States)
David W. Miller, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 3126:
Adaptive Optics and Applications
Robert K. Tyson; Robert Q. Fugate, Editor(s)

© SPIE. Terms of Use
Back to Top