Share Email Print

Proceedings Paper

HELIRADAR technology for helicopter all-weather operations
Author(s): Wolfgang Kreitmair-Steck; Guenter Braun
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Currently available radar instruments are not capable of guiding a helicopter pilot safely during approach and landing under poor visibility conditions. This is due to lack of resolution and lack of elevation information. The RADAR technology that promises to improve this situation is called ROSAR, which stands for Synthetic Aperture Radar based on ROtating Antennas. In 1992 Eurocopter and Daimler- Benz Aerospace investigated the feasibility of an imaging radar based on ROSAR technology. The objective was to provide a video-like image with a resolution good enough to safely guide a helicopter pilot under poor visibility conditions. ROSAR proved to be especially well suited for this type of application since it allows for a stationary carrier platform: Rotating arms with antennas integrated into their tips can be mounted on top of the rotor head. In this way the scanning region of the antennas can cover 360 degree(s). While rotating, the antenna scans the environment from various visual angles without assuming a movement of the carrier platform itself. The signal is then processed as a function of the rotation angle of the antenna movement along a circular path. A radar system of this type is now under development at Eurocopter and Daimler-Benz Aerospace: HeliRadar. HeliRadar is designed as a frequency modulated continuous wave radar working in a frequency band around 35 GHz. The complete transmitter/receiver system is fixed mounted on top of the rotating axis of the helicopter. The received signals are transferred through the center of the rotor axis down into the cabin of the helicopter, where they are processed in a high performance digital signal processor (processing power: 10 GFLOPS). First encouraging results have been obtained from an experiment with `slow motion' movement of the antenna arm.

Paper Details

Date Published: 10 June 1997
PDF: 11 pages
Proc. SPIE 3066, Radar Sensor Technology II, (10 June 1997); doi: 10.1117/12.276107
Show Author Affiliations
Wolfgang Kreitmair-Steck, Eurocopter Deutschland GmbH (Germany)
Guenter Braun, Daimler-Benz Aerospace/Dornier Satellitensysteme GmbH (Germany)

Published in SPIE Proceedings Vol. 3066:
Radar Sensor Technology II
Robert Trebits; James L. Kurtz, Editor(s)

© SPIE. Terms of Use
Back to Top