Share Email Print

Proceedings Paper

Durability of experimental fused silicas to 193-nm induced compaction
Author(s): Richard E. Schenker; Fan Piao; William G. Oldham
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using birefringence monitoring, several experimental fused silicas are tested for 193-nm compaction durability. f N ( I J2 't 10.1 All samples exhibit densification that can be described by the equation: (Lip/p )u = 1C · l--7 · - · _.!!_J where 10 10 't 'tis the pulse length ('t0 = lns), Np is the pulse count, K is a constant, and I is the 193-nm energy density (I., = 1 mJ/cm2). The extracted value of K varies from 84ppB to 660ppB for experimental (1995-1996) fused silicas, as much as a factor of two improvement compared to (1990-1994) grades. The role of irradiation geometry in compaction is also investigated using finite element simulations. The net optical path difference formed for a given level of damage is found to increase by approximately 25% when the damage radii is increased from 30% to 70% of the total sample diameter in a relatively thin optical element. Keywords: damage, fused silica, two-photon, densification, compaction, lithography, 193-nm, stress-birefringence

Paper Details

Date Published: 7 July 1997
PDF: 10 pages
Proc. SPIE 3051, Optical Microlithography X, (7 July 1997); doi: 10.1117/12.275966
Show Author Affiliations
Richard E. Schenker, Univ. of California/Berkeley (United States)
Fan Piao, Univ. of California/Berkeley (United States)
William G. Oldham, Univ. of California/Berkeley (United States)

Published in SPIE Proceedings Vol. 3051:
Optical Microlithography X
Gene E. Fuller, Editor(s)

© SPIE. Terms of Use
Back to Top