Share Email Print

Proceedings Paper

Advanced FTIR techniques for photoresist process characterization
Author(s): Ronald A. Carpio; Jeff D. Byers; John S. Petersen; Wolfgang Theiss
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Several applications of Fourier transform IR spectroscopy (FTIR) for the characterization of photoresist thin films are demonstrated. The applications are accurate resist thickness measurements, monitoring of solvent loss during the post-apply-bake, determination of the glass transition temperature, and deprotection reaction kinetics. Model based, spectral analysis is applied for the determination of photoresist thickness from mid-FTIR spectra and is shown to have linear correlation to measurements with UV-visible spectroscopic ellipsometry. Using this capability in conjunction with an external reflection accessory and rapid data acquisition hardware and software, measurements are performed on Shipley SPR-510L photoresist during the post apply bake step, deriving thickness and solvent loss information. The use of this approach is also explored for making glass transition measurements of an environmentally stable chemical amplification positive resist photoresist. Finally, in-situ PEB studies are illustrated for APEX-E photoresist. For off-line analysis, an in-sample compartment mapping accessories is applied to the characterization of multiple open frame exposure matrices on 200 mm double-side polished wafers.

Paper Details

Date Published: 7 July 1997
PDF: 12 pages
Proc. SPIE 3050, Metrology, Inspection, and Process Control for Microlithography XI, (7 July 1997); doi: 10.1117/12.275946
Show Author Affiliations
Ronald A. Carpio, SEMATECH (United States)
Jeff D. Byers, SEMATECH (United States)
John S. Petersen, SEMATECH (United States)
Wolfgang Theiss, Technical Univ. Aachen (Germany)

Published in SPIE Proceedings Vol. 3050:
Metrology, Inspection, and Process Control for Microlithography XI
Susan K. Jones, Editor(s)

© SPIE. Terms of Use
Back to Top