Share Email Print
cover

Proceedings Paper

New single-layer positive photoresists for 193-nm photolithography
Author(s): Uzodinma Okoroanyanwu; Tsutomu Shimokawa; Jeff D. Byers; David R. Medeiros; C. Grant Willson; Qingshang Jason Niu; Jean M. J. Frechet; Robert D. Allen
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New series of chemically amplified, single layer, positive tone photoresists for 193 nm lithography have been developed. These resists were formulated from a series of cycloaliphatic co- and terpolymers of 2-methyl propyl bicyclo(2.2.1)hept-2- ene-5-carboxylate (carbo-tert-butoxynorbornene), bicyclo(2.2.1)hept-2-ene carboxylic acid (norbornene carboxylic acid), 8-methyl-8-carboxy tetracyclo(4,4,0.12,5,17,10)dodec-3-ene (methyltetracyclododecene carboxylic acid), norbornenemethanol, and maleic anhydride, which were synthesized by free radical, vinyl addition and ring opening metathesis polymerization techniques. The polymers derived from ring opening metathesis polymerization have bee successfully hydrogenated to provide yet another member of this group of materials. The cycloaliphatic polymer backbones provide etch resistance, mechanical properties and stability to radiation. The lithographic function is provided by carefully tailored pendant groups, which include an acid functionality that is masked by protecting groups that undergo acid catalyzed thermolysis as well as polar groups that influence the adhesion, wetability and dissolution properties of the polymer. The polymers are soluble in common organic solvents and have glass transition temperatures ranging from less than 60 degrees Celsius to higher than 250 degrees Celsius depending on their specific structure and mode of polymerization. They are at least as transparent at 193 nm as the corresponding acrylics. Their dry etch resistance varies with the formulation, but the base polymers etch more slowly than novolac under conditions typically used to pattern polysilicon. Upon exposure and baking, the resists have demonstrated high sensitivities (9-25 mJ/cm2), and 0.16 micrometer features have bean resolved.

Paper Details

Date Published: 7 July 1997
PDF: 12 pages
Proc. SPIE 3049, Advances in Resist Technology and Processing XIV, (7 July 1997); doi: 10.1117/12.275867
Show Author Affiliations
Uzodinma Okoroanyanwu, Univ. of Texas/Austin (United States)
Tsutomu Shimokawa, Univ. of Texas/Austin (United States)
Jeff D. Byers, SEMATECH (United States)
David R. Medeiros, Univ. of Texas/Austin (United States)
C. Grant Willson, Univ. of Texas/Austin (United States)
Qingshang Jason Niu, Univ. of California/Berkeley (United States)
Jean M. J. Frechet, Univ. of California/Berkeley (United States)
Robert D. Allen, IBM Almaden Research Ctr. (United States)


Published in SPIE Proceedings Vol. 3049:
Advances in Resist Technology and Processing XIV
Regine G. Tarascon-Auriol, Editor(s)

© SPIE. Terms of Use
Back to Top