Share Email Print

Proceedings Paper

Multiplexed extrinsic Fabry-Perot sensor system for in-situ strain and impact damage detection in composites
Author(s): Tonguy Liu; M. Q. Wu; Gerard Franklyn Fernando; Yun-Jiang Rao; David A. Jackson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The detection of impact damage in fiber reinforced composites is of significant concern because such damage can reduce the load-bearing ability of the composite. A number of factors can influence the nature and extent of impact damage development in composites including: (1) the type of reinforcing fiber and resin system; (2) the magnitude of the residual (fabrication) stresses; (3) the lay-up sequence; and (4) other factors such as the nature of the impactor, impact velocity, impact energy, temperature, moisture content in the composites etc.. From a structural health monitoring point of view, it is necessary to investigate the distribution of damage through the thickness of the composite. This paper reports on a simple, partially multiplexed optical fiber strain sensor system for in-situ strain and residual strain measurements in a carbon fiber reinforced epoxy composite. An extrinsic Fabry-Perot interferometric (EFPI) sensor design was used along with single mode fibers. The multiplexing scheme was based on wavelength division via the use of two super luminescent diodes at different wavelengths. A low-cost fiber optic CCD spectrometer was used as the detector. The multiplexing scheme was demonstrated using two EFPI sensors. In principle, a number of EFPI sensors can be multiplexed using the proposed scheme provided that each sensor is illuminated at a specified and different wavelength. The feasibility of detecting the residual strain in the composite was demonstrated successfully at two specified positions within a 16-ply carbon fiber reinforced composite. Preliminary results indicated that the sensor system was also capable of detecting the effects of a 3.2 J impact. Excellent correlation was obtained between the EFPI sensor output and that obtained using surface mounted strain gauges.

Paper Details

Date Published: 6 June 1997
PDF: 11 pages
Proc. SPIE 3042, Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, (6 June 1997); doi: 10.1117/12.275748
Show Author Affiliations
Tonguy Liu, Brunel Univ. (United Kingdom)
M. Q. Wu, Brunel Univ. (United Kingdom)
Gerard Franklyn Fernando, Brunel Univ. (United Kingdom)
Yun-Jiang Rao, Univ. of Kent at Canterbury (United Kingdom)
David A. Jackson, Univ. of Kent at Canterbury (United Kingdom)

Published in SPIE Proceedings Vol. 3042:
Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation
Richard O. Claus, Editor(s)

© SPIE. Terms of Use
Back to Top