Share Email Print
cover

Proceedings Paper

Comparative study of optical fiber cure-monitoring methods
Author(s): Peter A. Crosby; Graham R. Powell; Gerard Franklyn Fernando; David N. Waters; Chris M. France; Ronald C. Spooncer
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper reports on a comparative study undertaken for different types of optical fiber sensor developed to monitor the cure of an epoxy resin system. The optical fiber sensors used to monitor the cure process were based on transmission spectroscopy, evanescent wave spectroscopy and refractive index monitoring. The transmission sensor was prepared by aligning two optical fibers within a specially prepared sleeve with a gap between the optical fiber end-faces. During cure, resin from the specimen flowed into the gap between the optical fibers allowing transmission spectra of the resin to be obtained. The evanescent wave sensor was prepared by stripping the cladding from a high refractive index core optical fiber. The prepared sensor was embedded in the sample and attenuated total reflectance spectra recorded from the resin/core boundary. Refractive index monitoring was undertaken using a high refractive index core optical fiber which had a small portion of its cladding removed. The prepared sensor was embedded in the resin specimen and light from a single wavelength source was launched into the fiber. Changes in the guiding characteristics of the sensor due to refractive index changes at the resin/core boundary were used to monitor the progress of the cure reaction. The transmission and evanescent wave spectroscopy sensors were used to follow changes in characteristic near-infrared absorption bands of the resin over the range 1450 - 1700 nm during the cure reaction. Consequently these techniques required tunable wavelength sources covering specific wavelength ranges. However, the refractive index based sensor used a single wavelength source. Therefore the equipment costs for this type of sensor were considerably less. Additionally, the refractive index sensor did not require a single wavelength source at any particular wavelength and could be applied to any spectral region in which the optical fiber would transmit light. The advantages and disadvantages of these three methods are discussed.

Paper Details

Date Published: 6 June 1997
PDF: 13 pages
Proc. SPIE 3042, Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, (6 June 1997); doi: 10.1117/12.275731
Show Author Affiliations
Peter A. Crosby, Brunel Univ. (United Kingdom)
Graham R. Powell, Brunel Univ. (United Kingdom)
Gerard Franklyn Fernando, Brunel Univ. (United Kingdom)
David N. Waters, Brunel Univ. (United Kingdom)
Chris M. France, Brunel Univ. (United Kingdom)
Ronald C. Spooncer, Brunel Univ. (United Kingdom)


Published in SPIE Proceedings Vol. 3042:
Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation
Richard O. Claus, Editor(s)

© SPIE. Terms of Use
Back to Top