Share Email Print
cover

Proceedings Paper

Digital signal processing in optical coherence tomography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical coherence tomography (OCT) is a novel medical imaging modality which utilizes coherence ranging to perform high resolution (approximately 10 micrometer) non-invasive sub- surface imaging of biostructures. We have developed an OCT system consisting of a low-coherence interferometer and a calibration interferometer allowing sub-micron interferogram acquisition accuracy. We propose some digital signal processing strategies for image enhancement in optical coherence tomography. A linear shift invariant system model is presented for describing coherent light-tissue interactions in optical coherence tomography. In this model, the electric field backscattered from a target specimen is treated as a convolution of the incident field and a postulated tissue impulse response which describes the profile of scattering sites within the specimen. Based on this model, a novel technique for enhancing the sharpness of optical coherence tomographic images of biological structures using digital deconvolution is demonstrated. Using this approach, resolution improvement by a factor of greater than 2.2 is achieved in the longitudinal direction.

Paper Details

Date Published: 22 May 1997
PDF: 5 pages
Proc. SPIE 2981, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, (22 May 1997); doi: 10.1117/12.274307
Show Author Affiliations
Manish D. Kulkarni, Case Western Reserve Univ. (United States)
Joseph A. Izatt, Case Western Reserve Univ. (United States)


Published in SPIE Proceedings Vol. 2981:
Coherence Domain Optical Methods in Biomedical Science and Clinical Applications
Valery V. Tuchin; Halina Podbielska; Ben Ovryn, Editor(s)

© SPIE. Terms of Use
Back to Top