Share Email Print

Proceedings Paper

Guest-host optical limiters with high-laser-damage threshold
Author(s): Mark C. Brant; Michael E. De Rosa; Hao Jiang; Daniel G. McLean; Richard L. Sutherland; Angela L. Campbell
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Conventional guest-host optical limiting materials utilize either a liquid solvent or solid as the matrix for nonlinear absorbing chromophore dopants. Concentration gradients of the chromophore in the matrix can improve optical limiting performance. However, low viscosity liquid solutions can not retain a concentration gradient while polymer solid matrices damage at low laser fluences. We report on a novel approach of using an elastic polymer and viscoelastic gels for guest- host optimal limiting matrices. We achieve high bulk laser damage thresholds in the hosts and maintain a concentration gradient of the chromophore. By softening the epoxy we significantly enhance its bulk laser damage threshold. We characterize this effect by measuring the damage threshold as a function of viscoelastic properties. In addition, optical limiting was demonstrated in all the hosts doped with nonlinear phthalocyanine chromophores.

Paper Details

Date Published: 13 May 1997
PDF: 8 pages
Proc. SPIE 2966, Laser-Induced Damage in Optical Materials: 1996, (13 May 1997); doi: 10.1117/12.274225
Show Author Affiliations
Mark C. Brant, Air Force Wright Lab. (United States)
Michael E. De Rosa, Air Force Wright Lab. (United States)
Hao Jiang, Air Force Wright Lab. (United States)
Daniel G. McLean, Air Force Wright Lab. (United States)
Richard L. Sutherland, Air Force Wright Lab. (United States)
Angela L. Campbell, Air Force Wright Lab. (United States)

Published in SPIE Proceedings Vol. 2966:
Laser-Induced Damage in Optical Materials: 1996
Harold E. Bennett; Arthur H. Guenther; Mark R. Kozlowski; Brian Emerson Newnam; M. J. Soileau, Editor(s)

© SPIE. Terms of Use
Back to Top