Share Email Print
cover

Proceedings Paper

Finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic material properties
Author(s): George Andre Lesieutre; Usik Lee
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A finite element for planar beams with active constrained layer damping treatments is presented. Features of this non- shear locking element include a time-domain viscoelastic material model, and the ability to readily accommodate segmented (i.e. non-continuous) constraining layers. These features are potentially important in active control applications: the frequency-dependent stiffness and damping of the viscoelastic material directly affects system modal frequencies and damping; the high local damping of the viscoelastic layer can result in complex vibration modes and differences in the relative phase of vibration between points; and segmentation, an effective means of increasing passive damping in long-wavelength vibration modes, affords multiple control inputs and improved performance in an active constrained layer application. The anelastic displacement fields (ADF) method is used to implement the viscoelastic material model, enabling the straightforward development of time-domain finite elements. The performance of the finite element is verified through several sample modal analyses, including proportional-derivative control based on discrete strain sensing. Because of phasing associated with mode shapes, control using a single continuous ACL can be destabilizing. A segmented ACL is more robust than the continuous treatment, in that the damping of modes at least up to the number of independent patches is increased by control action.

Paper Details

Date Published: 9 May 1997
PDF: 14 pages
Proc. SPIE 3045, Smart Structures and Materials 1997: Passive Damping and Isolation, (9 May 1997); doi: 10.1117/12.274210
Show Author Affiliations
George Andre Lesieutre, The Pennsylvania State Univ. (United States)
Usik Lee, Inha Univ. (South Korea)


Published in SPIE Proceedings Vol. 3045:
Smart Structures and Materials 1997: Passive Damping and Isolation
L. Porter Davis, Editor(s)

© SPIE. Terms of Use
Back to Top