Share Email Print
cover

Proceedings Paper

Optical reconstruction of echo planar MRI data sets
Author(s): Moriel S. NessAiver; Ning Li; Tulay Adali; Terry M. Turpin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

High speed magnetic resonance imaging is frequently accomplished using one of a family of echo planar imaging (EPI) methods. Many of these methods move through k-space in a decidedly non-linear fashion. Typically, the non- rectilinear data sets are interpolated onto a rectilinear grid and then reconstructed using an inverse FFT. We present a method of reconstructing non-rectilinear EPI MRI data sets utilizing an optoelectronic implementation of the 2D discrete Fourier transform (DFT) bypassing the need for interpolation or regridding. Each point in k-space is represented as a fringe pattern and is written onto a charge coupled device photosensing array. The transforms of each point are initially summed on the photodetector and finally digitally summed to form the complex image. Up to 64K arbitrarily spaced complex points can be transformed into a 256 X 256 complex output matrix in as little as 50 msec. Reconstruction of blipped sinusoidal data using a DFT results in image quality similar to traditional methods whereas preliminary results of DFT reconstruction of spiral k-space trajectory data sets shows improved resolution. We also examine methods of determining the true k-space trajectory and the affect on reconstruction artifacts.

Paper Details

Date Published: 2 May 1997
PDF: 9 pages
Proc. SPIE 3032, Medical Imaging 1997: Physics of Medical Imaging, (2 May 1997); doi: 10.1117/12.273991
Show Author Affiliations
Moriel S. NessAiver, Univ. of Maryland/Baltimore (United States)
Ning Li, Univ. of Maryland/Baltimore (United States)
Tulay Adali, Univ. of Maryland/Baltimore (United States)
Terry M. Turpin, Essex Corp. (United States)


Published in SPIE Proceedings Vol. 3032:
Medical Imaging 1997: Physics of Medical Imaging
Richard L. Van Metter; Jacob Beutel, Editor(s)

© SPIE. Terms of Use
Back to Top