Share Email Print
cover

Proceedings Paper

Essential physics of nuclear acoustic resonance imaging
Author(s): Ross M. Henderson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nuclear acoustic resonance (NAR), like nuclear magnetic resonance (NMR), can be used as a spectroscopic imaging tool to detect and characterize soft tissue densities and differences on the atomic scale. Whereas NMR uses electromagnetic radiation to induce energy level transitions, NAR uses acoustic radiation. The frequency of this radiation is typically 1 to 100 MHz; NAR imaging therefore uses ultrasonic energy to induce transitions among the nuclear spin energy levels. By means of piezoelectric transducers, polarized acoustic waves are generated and propagated within a specimen. If these perturbations are in resonance with the specimen's nuclear spin system, then the acoustic waves will periodically modulate an internal magnetic dipole or electric quadrupole interaction as acoustic energy is absorbed. The measurement of this acoustic energy absorption is analogous to the computation of the spin-lattice relaxation time, T1, caused by the release of radiofrequency energy into the surrounding lattice of an excited nucleus and used in magnetic resonance imaging. Accordingly, NAR imaging combines the tools of ultrasound with the techniques of MRI to yield a new and potentially valuable medical imaging modality. The purpose of this paper is to discuss the essential physics of NAR, and to suggest how NAR signals can be processed for medical imaging.

Paper Details

Date Published: 2 May 1997
PDF: 11 pages
Proc. SPIE 3032, Medical Imaging 1997: Physics of Medical Imaging, (2 May 1997); doi: 10.1117/12.273979
Show Author Affiliations
Ross M. Henderson, George Washington Univ. (United States)


Published in SPIE Proceedings Vol. 3032:
Medical Imaging 1997: Physics of Medical Imaging
Richard L. Van Metter; Jacob Beutel, Editor(s)

© SPIE. Terms of Use
Back to Top