Share Email Print
cover

Proceedings Paper

Filamentation in high-power tapered semiconductor amplifiers
Author(s): David J. Bossert; Gregory C. Dente; Michael L. Tilton
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Filament formation is currently a limiting factor in the development of high power, spatially coherent semiconductor amplifiers. An experimental and theoretical investigation has been conducted to examine the filamentation tendencies of tapered amplifier structures. Experimental measurements of the far-field intensity distribution of a tapered amplifier which has been intentionally `seeded' to filament are compared to a perturbative solution of the paraxial wave equation. This model is used to address several design issues which can be optimized to suppress filamentation. The effect of non-uniform carrier injection due to carrier- induced bandgap changes is also investigated numerically.

Paper Details

Date Published: 2 May 1997
PDF: 11 pages
Proc. SPIE 3001, In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, (2 May 1997); doi: 10.1117/12.273817
Show Author Affiliations
David J. Bossert, Air Force Phillips Lab. (United States)
Gregory C. Dente, GCD Associates (United States)
Michael L. Tilton, Rockwell Power Systems (United States)


Published in SPIE Proceedings Vol. 3001:
In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared
Hong K. Choi; Peter S. Zory, Editor(s)

© SPIE. Terms of Use
Back to Top