Share Email Print

Proceedings Paper

Compact GaAs-based second-harmonic generation horizontal cavity surface-emitting blue lasers
Author(s): Michael J. Jurkovic; Qinghong Du; J. L. Jimenez; Wen I. Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A low-threshold second-harmonic generation horizontal cavity surface emitting laser (SHG-HCSEL) operating at 0.49 micrometers under electrical pumping is proposed and theoretical design considerations are presented. The strained InGaAs quantum well (QW) laser, implemented on a nearly optimally oriented (311)B-GaAs substrate, incorporates a reduced Al-content, quasi-phase matched (QPM) single guiding GaAs layer (SGL) structure, a novel double-tapered horizontal waveguide with high reflection-coated cleaved facets, and a metallization- free emission window at the center of the device. The horizontal geometry serves to increase the ratio of fundamental power density within the SHG-region to that at the facets, thereby increasing the laser optical power at the onset of catastrophic optical damage (COD) at the facets. Simulations indicate that surface blue emission (on the order of 14 W/cm2 peak, corresponding to 50 (mu) W for a 10 micrometers X 100 micrometers emission window) can be obtained from a compact device, with a moderate taper angle of 3 degree(s), operating well below the COD limit. The model also shows that a SGL thickness of 175 nm corresponds with the second QPM-SHG efficiency peak which coincides with peak optical confinement in the QW. Finally, AlGaAs cladding thickness of 113 nm is found to be the optimum etch condition beneath the SHG emission window.

Paper Details

Date Published: 2 May 1997
PDF: 12 pages
Proc. SPIE 3001, In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared, (2 May 1997); doi: 10.1117/12.273786
Show Author Affiliations
Michael J. Jurkovic, Columbia Univ. (United States)
Qinghong Du, Columbia Univ. (United States)
J. L. Jimenez, Columbia Univ. (United States)
Wen I. Wang, Columbia Univ. (United States)

Published in SPIE Proceedings Vol. 3001:
In-Plane Semiconductor Lasers: from Ultraviolet to Midinfrared
Hong K. Choi; Peter S. Zory, Editor(s)

© SPIE. Terms of Use
Back to Top