Share Email Print

Proceedings Paper

Laser microchemical technology: new tools for microsystem engineering, debug, and failure analysis
Author(s): Scott Silverman; Richard J. Aucoin; Jeff Mallat; Daniel J. Ehrlich
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new class of laser-based tools now permits the ultra-high- speed direct etching of substrate or circuit layers, and direct deposition of metal interconnect. These new methods have important applications in design debug/failure analysis and in micromachining. The deposition capability enables the rapid reconfigurration of an integrated circuit (IC) or multichip module (MCM) in real-time from a live color image. Metal lines are added or deleted through a graphical user interface with operations occurring on an actual part rather than a data base. Etching tools provide a means for locally thinning silicon integrated circuits, an essential step for testing of flip-chip circuits. An intricate microelectromechanical system (MEMS) can be carved directly into silicon from a 3-D data file without the need for masks or, alternatively, it may be trimmed to optimal performance as it oscillates under the laser focus. With laser microchemical technology, microelectronic parts can be locally machined without introducing process stress or contamination; micron- thickness metal lines are laid down in a one-step vapor phase deposition at 200 micrometers per second writing speed. Rapid deposition combined with the superior metallurgy of the laser interconnect, translates into writing with a conductance per unit writing time of 1000 to 10,000 times the rate of a focused ion beam. Silicon is etched at greater than 1000,000 cubic microns per second while retaining an average surface roughness of several hundred angstroms.

Paper Details

Date Published: 9 May 1997
PDF: 9 pages
Proc. SPIE 2991, Laser Applications in Microelectronic and Optoelectronic Manufacturing II, (9 May 1997); doi: 10.1117/12.273719
Show Author Affiliations
Scott Silverman, Revise Inc. (United States)
Richard J. Aucoin, Revise Inc. (United States)
Jeff Mallat, Revise Inc. (United States)
Daniel J. Ehrlich, Revise Inc. (United States)

Published in SPIE Proceedings Vol. 2991:
Laser Applications in Microelectronic and Optoelectronic Manufacturing II
Jan J. Dubowski, Editor(s)

© SPIE. Terms of Use
Back to Top