Share Email Print
cover

Proceedings Paper

High-quantum-efficiency 2.2-um InGaAs MOCVD photodiodes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photodiodes responding in the 0.8-2.3 micrometers wavelength range are of interest in a wide range of applications, from wind- shear detection systems which use eyesafe 2.1 micrometers lasers to differential absorption LIDAR aerosol measurements of CO2. In this paper, we report on uncooled, broadband, 2.25 micrometers lattice-mismatched 0.55eV In0.72Ga0.28As photodiode arrays, in which the cutoff wavelength has been 'extended' from the 1.65 micrometers which is standard for 0.74eV In0.53Ga0.47As lattice-matched to InP wafers. InxGa1-xAs step-grading layers were used to transition from the InP wafer to the final In0.72Ga0.28As photodiode material during the metal organic chemical vapor deposition epitaxial growth. Linear 64 X 1 photodiode arrays were made with an independently-verified external quantum efficiency above 50 percent from 0.8 to 2.2 micrometers using MgF2/ZnS dual layer antireflection coating. Average 300 degree K area-normalized dark current for these N/P diodes was 5 X 10-5 A/cm2 at 10mV reverse bias.

Paper Details

Date Published: 15 April 1997
PDF: 7 pages
Proc. SPIE 2999, Photodetectors: Materials and Devices II, (15 April 1997); doi: 10.1117/12.271191
Show Author Affiliations
Steven Wojtczuk, Spire Corp. (United States)
Peter C. Colter, Spire Corp. (United States)
Murzy D. Jhabvala, NASA Goddard Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 2999:
Photodetectors: Materials and Devices II
Gail J. Brown; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top