Share Email Print
cover

Proceedings Paper

Recursive binary dilation using digital line-structuring elements in arbitrary orientations
Author(s): Desikachari Nadadur; Robert M. Haralick; Florence H. Sheehan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Performing morphological operations such as dilation and erosion of binary images, using very long line structuring elements is computationally expensive when performed brute- force following the definitions. In this paper, we present a two-pass algorithm that runs at constant time for obtaining dilations, irrespective of the lengths and orientations of the line structuring elements. We use the concept of orientation error between the continuous line and its discrete counterpart in generating the basic digital line structuring element used in obtaining what we call the dilation transform. To obtain any dilation, we just threshold the dilation transform with a value that is the length of the desired line structuring element. We implemented the algorithm in general image processing system environment on a sun sparc station 10, and tested them on a set of 240 X 250 sized salt and pepper noise images with probability of a pixel being a 1-pixel set to 0.25, for orientations (theta) (epsilon) [ (pi) /2, 3(pi) /2 ] of the normals of the continuous lines, of which the digital line structuring elements are a discretization, and their lengths in the range 5 to 145 pixels. We achieved a speed up of about 50 over the conventional methods when the structuring elements had lengths of 145 pixels. The algorithm ran at a constant time of 200ms. We required only one minimum operation per result pixel.

Paper Details

Date Published: 4 April 1997
PDF: 11 pages
Proc. SPIE 3026, Nonlinear Image Processing VIII, (4 April 1997); doi: 10.1117/12.271112
Show Author Affiliations
Desikachari Nadadur, Univ. of Washington (United States)
Robert M. Haralick, Univ. of Washington (United States)
Florence H. Sheehan, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 3026:
Nonlinear Image Processing VIII
Edward R. Dougherty; Jaakko T. Astola, Editor(s)

© SPIE. Terms of Use
Back to Top