Share Email Print

Proceedings Paper

Experimental measurements and influence of overload-induced residual stress field on constant amplitude fatigue crack growth in aluminum alloy
Author(s): M. A. Wahab; G. R. Rohrsheim; I. H. Brown
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The aim of this research is to investigate current methods in Linear Elastic Fracture Mechanics for their suitability to predict crack growth in Aluminum alloy 7050 - T7451, when a compressive residual stress field is introduced by an overload. A comparative study has been made on the effect of various levels of tensile overload on the crack growth rate in Aluminum alloy. Experiments were performed on center-cracked tension specimens at various values of range of stress- intensity-factor ((Delta) K). Crack growth measurements are performed using crack propagation gauges and a travelling microscope. The average crack growth rate is used to determine an effective (Delta) K value for each interval using the fatigue crack propagation curve. After the application of overloads, the propagation gauges revealed a period of significant retardation before the crack growth rates returned to their baseline levels. The results from the numerical predictions are compared with the experimental results. The prediction model produces conservative results for both constant amplitude crack growth and overload induced retarded growth.

Paper Details

Date Published: 20 March 1997
PDF: 6 pages
Proc. SPIE 2921, International Conference on Experimental Mechanics: Advances and Applications, (20 March 1997); doi: 10.1117/12.269867
Show Author Affiliations
M. A. Wahab, Univ. of Adelaide (Australia)
G. R. Rohrsheim, Strategic Management Sciences (Australia)
I. H. Brown, Univ. of Adelaide (Australia)

Published in SPIE Proceedings Vol. 2921:
International Conference on Experimental Mechanics: Advances and Applications
Fook Siong Chau; C. T. Lim, Editor(s)

© SPIE. Terms of Use
Back to Top