Share Email Print

Proceedings Paper

Electroassembly of smart polymer structures (role of polyelectrolytes)
Author(s): Gordon G. Wallace; Samuel B. Adeloju; Shannon J. Shaw
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Polymers are ubiquitous in nature, owing to their use as both structural and active components in dynamic, living systems. From a synthetic point of view man has utilized the excellent structural properties of polymers (light weight/high strength) for some decades now. However, the integration of active functional polymers into engineered systems and structures is a more recent endeavour with numerous challenges still to be overcome. Conducting electroactive polymers such as polypyrroles, polythiophenes and polyanilines are a fascinating group of functional polymers. They are electronic conductors and in addition they response to chemical or electrical stimuli in a number of ways. They are truly electrofunctional polymers. This unique combination of properties has led to the use of conducting polymers for electronic components, chemical sensors and biosensors, membranes for solution or gas separations, electromechanical actuators, electro-optical devices, biomaterials capable of controlled release of drugs or stimulation of biological processes, and for corrosion protection.

Paper Details

Date Published: 14 February 1997
PDF: 8 pages
Proc. SPIE 3040, Smart Structures and Materials 1997: Smart Materials Technologies, (14 February 1997); doi: 10.1117/12.267110
Show Author Affiliations
Gordon G. Wallace, Univ. of Wollongong (Australia)
Samuel B. Adeloju, Univ. of Western Sydney/Nepean (Australia)
Shannon J. Shaw, Univ. of Western Sydney/Nepean (Australia)

Published in SPIE Proceedings Vol. 3040:
Smart Structures and Materials 1997: Smart Materials Technologies
Wilbur C. Simmons; Ilhan A. Aksay; Dryver R. Huston, Editor(s)

© SPIE. Terms of Use
Back to Top