Share Email Print
cover

Proceedings Paper

Optical and sorptive properties of cellulose fiber by infrared spectroscopy methods
Author(s): Viktoras V. Vaicikauskas; Vitas Svedas; Regimantas Januskevicius
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical and sorptive properties of cellulose have been investigated by three methods covering the wide 7000 - 80 cm-1 spectral range. Attenuated total reflection spectra showed shift of sorbed water bands to shorter wavelengths under paper moisture increase. Surface electromagnetic waves (SEW) propagation at metal - Ge (film) - paper system were investigated firstly in far infrared region. Four slopes in the SEW intensity dependence versus time under paper drying were observed. Near infrared diffuse transmittance revealed a band of bonded to cellulose water at 1.53 micrometers which shows 0.08 micrometer red shift compared to 1.45 micrometer band of free water. Damping constants of cellulose sheets of various thickness were determined in the 140 - 85 cm-1 range by the surface electromagnetic wave method. Sorptive properties of cellulose are compared to those of other sorbers made of divided silica.

Paper Details

Date Published: 6 February 1997
PDF: 6 pages
Proc. SPIE 2968, Optical Organic and Semiconductor Inorganic Materials, (6 February 1997); doi: 10.1117/12.266813
Show Author Affiliations
Viktoras V. Vaicikauskas, Institute of Physics (Lithuania)
Vitas Svedas, Institute of Physics (Lithuania)
Regimantas Januskevicius, Institute of Physics (Lithuania)


Published in SPIE Proceedings Vol. 2968:
Optical Organic and Semiconductor Inorganic Materials
Edgar A. Silinsh; Arthur Medvids; Andrejs R. Lusis; Andris O. Ozols, Editor(s)

© SPIE. Terms of Use
Back to Top