Share Email Print
cover

Proceedings Paper

Efficient arithmetic coding for wavelet image compression
Author(s): Zixiang Xiong; Kannan Ramchandran; Michael T. Orchard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We address efficient context modeling in arithmetic coding for wavelet image compression. Quantized highpass wavelet coefficients are first mapped into a binary source, followed by high order context modeling in arithmetic coding. A blending technique is used to combine results of context modeling of different orders into a single probability estimate. Experiments show that an arithmetic coder with efficient context modeling is capable of achieving a 10% bitrate saving (or 0.5 dB gain in PSNR) over a zeroth order adaptive arithmetic coder in high performance wavelet image coders.

Paper Details

Date Published: 10 January 1997
PDF: 12 pages
Proc. SPIE 3024, Visual Communications and Image Processing '97, (10 January 1997); doi: 10.1117/12.263294
Show Author Affiliations
Zixiang Xiong, Princeton Univ. (United States)
Kannan Ramchandran, Univ. of Illinois/Urbana-Champaign (United States)
Michael T. Orchard, Princeton Univ. (United States)


Published in SPIE Proceedings Vol. 3024:
Visual Communications and Image Processing '97
Jan Biemond; Edward J. Delp, Editor(s)

© SPIE. Terms of Use
Back to Top