Share Email Print

Proceedings Paper

Interframe vector wavelet coding technique
Author(s): John P. Wus; Weiping Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.

Paper Details

Date Published: 10 January 1997
PDF: 11 pages
Proc. SPIE 3024, Visual Communications and Image Processing '97, (10 January 1997); doi: 10.1117/12.263276
Show Author Affiliations
John P. Wus, Lehigh Univ. (United States)
Weiping Li, Lehigh Univ. (United States)

Published in SPIE Proceedings Vol. 3024:
Visual Communications and Image Processing '97
Jan Biemond; Edward J. Delp, Editor(s)

© SPIE. Terms of Use
Back to Top