Share Email Print

Proceedings Paper

Neural network recognition of the conifer seedling root collar
Author(s): Michael P. Rigney; Glenn A. Kranzler
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent work, we have demonstrated a prototype machine vision seedling inspection system which shows strong promise for automating production-line grading. Precise morphological measurements and accurate grade assignment require reliable identification of the seedling root collar location. The large variability of seedling morphology makes automatic root collar location the most challenging aspect of machine vision seedling inspection. This function is currently achieved using a heuristic algorithm which relies on many operator-controlled parameters to extract root collar location cues based on seedling shape. Artificial intelligence techniques, specifically, neural networks, have yielded excellent performance in similar pattern recognition applications. Neural networks were developed to locate the seedling root collar in digital images acquired by a machine vision inspection system. Several neural network architectures and input feature sets are evaluated. Input features consist of those used by the heuristic algorithm, plus additional features extracted from each line in the seedling image. The performance of several neural networks was superior to that of the heuristic algorithm. Good performance was achieved by networks which used local (single line) features along with normalized line number as inputs. A hierarchical network which took inputs from 15 lines over a 140-mm window provided improved performance in one case. The best networks identified the root collar location with an average error of less than 1 mm and an error standard deviation of 12 mm.

Paper Details

Date Published: 18 December 1996
PDF: 10 pages
Proc. SPIE 2907, Optics in Agriculture, Forestry, and Biological Processing II, (18 December 1996); doi: 10.1117/12.262851
Show Author Affiliations
Michael P. Rigney, Oklahoma State Univ. (United States)
Glenn A. Kranzler, Oklahoma State Univ. (United States)

Published in SPIE Proceedings Vol. 2907:
Optics in Agriculture, Forestry, and Biological Processing II
George E. Meyer; James A. DeShazer, Editor(s)

© SPIE. Terms of Use
Back to Top