Share Email Print
cover

Proceedings Paper

YBa2Cu3O7-x/Au/Nb device structures
Author(s): Brian D. Hunt; Marc C. Foote; Louis J. Bajuk; Richard P. Vasquez
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fabrication and testing of planar and edge geometry YBaCuO/Au/Nb superconductor/normal-metal/superconductor (SNS) device structures is described. Weak-link devices of this type serve as sensitive probes of the electrical quality of the YBaCuO/Au interface. The devices are fabricated using laser-ablated, in situ, c-axis-oriented YBaCuO thin films, with both annealed and unannealed YBaCuO/Au interfaces. The planar SNS structures are formed by sequential, in situ deposition of YBaCuO, Au, and Nb, followed by etching, planarization, and wiring electrode definition to produce junctions ranging from 5 to 20 micron on a side. Resulting RnA products are 1-10 x 10 to the -8th ohm-sq cm with critical current densities up to 5 kA/sq cm. For the edge geometry devices, the YBaCuO film edges are patterned using Ar ion milling, followed by a low energy ion cleaning step and in situ deposition of Au and Nb. Devices with areas in the 10 to the -7th to 10 to the -8th sq cm range have been fabricated with RnA products lower than 10 to the -8th ohm-sq cm and critical current densities up to 3kA/sq cm. Both types of devices show ac Josephson steps under microwave irradiation. The best results have been obtained with annealed YBaCuO/Au interfaces.

Paper Details

Date Published: 1 March 1991
PDF: 7 pages
Proc. SPIE 1394, Progress In High-Temperature Superconducting Transistors and Other Devices, (1 March 1991); doi: 10.1117/12.25735
Show Author Affiliations
Brian D. Hunt, Jet Propulsion Lab. (United States)
Marc C. Foote, Jet Propulsion Lab. (United States)
Louis J. Bajuk, Jet Propulsion Lab. (United States)
Richard P. Vasquez, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 1394:
Progress In High-Temperature Superconducting Transistors and Other Devices
Rajendra Singh; Jagdish Narayan; David T. Shaw, Editor(s)

© SPIE. Terms of Use
Back to Top