Share Email Print

Proceedings Paper

Photonically controlled wavelength division multiplexing (WDM) active array
Author(s): Mark Russell; Anthony Marinilli; Leon Green; Joseph Preiss; Faquir C. Jain
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Emerging missions for shipboard defense and tactical ballistic missile defense require the support of wideband, multi-function radars capable of concurrently performing hemispherical surveillance, tracking and simultaneous illumination of multiple targets. Active phased array antennas to support these missions are limited by their cost, bandwidth and aperture weight. As mission requirements become more demanding the integration of photonics into phased arrays, which promises increased bandwidth, decreased aperture weight and less complex transmit/receive modules, must be pursued. As part of the Office of Naval Research's Accelerated Capabilities Initiative Raytheon, supported by the University of Connecticut, is developing a novel photonic antenna architecture for the control of active phased arrays. The photonic architecture is optically non- coherent and achieves a reduction in hardware complexity, and therefore array cost, via device sharing which is facilitated through wavelength division multiplexing (WDM). By properly configuring the photonic architecture, WDM represents a beneficial compromise between hardware complexity and array performance. To realize the photonic architecture the University of Connecticut is developing novel multiple quantum well photonic devices, including electronically tunable lasers and filters and a broadband amplitude modulator. This paper will discuss the antenna architecture wavelength division multiplexing and the enabling photonic devices.

Paper Details

Date Published: 5 November 1996
PDF: 9 pages
Proc. SPIE 2845, Radar Processing, Technology, and Applications, (5 November 1996); doi: 10.1117/12.257230
Show Author Affiliations
Mark Russell, Raytheon Electronic Systems (United States)
Anthony Marinilli, Raytheon Electronic Systems (United States)
Leon Green, Raytheon Electronic Systems (United States)
Joseph Preiss, Raytheon Electronic Systems (United States)
Faquir C. Jain, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 2845:
Radar Processing, Technology, and Applications
William J. Miceli, Editor(s)

© SPIE. Terms of Use
Back to Top