Share Email Print
cover

Proceedings Paper

Multispectral imaging of a space shuttle primary reaction control system firing
Author(s): David L. A. Rall; Irving L. Kofsky; Rodney A. Viereck; Charles P. Pike
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A series of three-second firings of Space Shuttle Orbiter's 870-lbf Primary Reaction Control System thruster motors were photographed from the crew cabin with an intensified video camera. The spectral imager sequentially recorded 4 ms exposures at 30 Hz in six 20 to 30 nm FWHM channels centered from 400 to 800 nm, chosen specifically to study bi- propellant (monomethyl hydrazine fuel/nitrogen dioxide oxidizer) thruster exhaust chemistry. The species producing the visible radiance were earlier identified as CN, CH, C2, NO2, and HNO; the electronic bands originating from the same excited states of CN (B-X) and CH (A-X) extend into the near UV. Images of the vacuum core viewing within a few degrees of perpendicular to the first several meters from the exit plane were analyzed to relate the spatial distribution of exhaust product species and afterburning chemistry to a flowfield-kinetics model. Profiles of radiance transverse to the exhaust symmetry-axis show substantial limb brightening in all six channels, indicating that the distribution of the radiating species corresponds to a `zone'-type model of liquid-fuel film-cooled engine performance. Profiles of band radiance along the axis indicate the production and quenching of excited species as the exhaust gas adiabatically expands and cools.

Paper Details

Date Published: 8 November 1996
PDF: 13 pages
Proc. SPIE 2831, Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation, (8 November 1996); doi: 10.1117/12.257192
Show Author Affiliations
David L. A. Rall, PhotoMetrics, Inc. (United States)
Irving L. Kofsky, PhotoMetrics, Inc. (United States)
Rodney A. Viereck, Air Force Phillips Lab. (United States)
Charles P. Pike, Air Force Phillips Lab. (United States)


Published in SPIE Proceedings Vol. 2831:
Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation
Robert E. Huffman; Christos G. Stergis, Editor(s)

© SPIE. Terms of Use
Back to Top