Share Email Print
cover

Proceedings Paper

Prototype broadband/high-resolution spectrometer designed for the study of planetary atmospheres
Author(s): William B. Cook
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical remote sensing plays an important role in the study of planetary atmospheres, especially in determining trace gas abundance, temperature profiles and dynamics/winds. Instruments to be flown aboard interplanetary platforms must be small, have low mass and consume little power. Fabry- Perot interferometers (FPI) satisfy these physical constraints and are capable of acquiring spectra suitable for analysis of the atmospheric parameters. Two new applications of FPI technology have recently been developed at UM/SPRL: the multiplex Fabry-Perot interferometer (MFPI) and the multi-order etalon spectrometer (MOES). The MFPI produces a broad bandwidth high resolution spectrum via Fourier transformed interferograms produced by scanning the etalon over large distances. The MOES simultaneously measures several similar lines in a regular spectrum by matching its free spectral range to the line spacing. Thus MFPI provides a means for broadening the usable bandwidth and MOES can record improved signal-to-noise spectra at extremely high resolution. This paper reports recent progress in the design, construction and testing of a prototype instrument incorporating both the MFPI and the MOES concepts using a single set of etalon plates.

Paper Details

Date Published: 31 October 1996
PDF: 12 pages
Proc. SPIE 2830, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, (31 October 1996); doi: 10.1117/12.256125
Show Author Affiliations
William B. Cook, Univ. of Michigan (United States)


Published in SPIE Proceedings Vol. 2830:
Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II
Paul B. Hays; Jinxue Wang, Editor(s)

© SPIE. Terms of Use
Back to Top