Share Email Print
cover

Proceedings Paper

Atmospheric infrared fast transmittance models: a comparison of two approaches
Author(s): Scott E. Hannon; L. Larrabee Strow; W. Wallace McMillan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The next generation of atmospheric temperature and humidity sounders will have thousands of radiometrically accurate spectral channels throughout the infrared. The retrieval of atmospheric parameters from these radiances will stress both the accuracy and efficiency of forward model radiative transfer algorithms. We are developing a forward model for the Atmospheric Infrared Sounder (AIRS) which will fly on the EOS PM platform. The work presented here is based on algorithms developed over a number of years by McMillin, Fleming, and others for low resolution infrared sounders (HIRS) and microwave sounders. We have developed tow 'high resolution' AIRS forward model algorithms for water vapor, one based on atmospheric layers with fixed pressures and variable water amounts, and other based on layers of fixed absorber amount but with variable pressures. These algorithms are compared for speed, accuracy, ease of development, and other factors that must be considered in developing a complex operational retrieval system.

Paper Details

Date Published: 31 October 1996
PDF: 12 pages
Proc. SPIE 2830, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, (31 October 1996); doi: 10.1117/12.256106
Show Author Affiliations
Scott E. Hannon, Univ. of Maryland/Baltimore County (United States)
L. Larrabee Strow, Univ. of Maryland/Baltimore County (United States)
W. Wallace McMillan, Univ. of Maryland/Baltimore County (United States)


Published in SPIE Proceedings Vol. 2830:
Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II
Paul B. Hays; Jinxue Wang, Editor(s)

© SPIE. Terms of Use
Back to Top