Share Email Print
cover

Proceedings Paper

Study of four-wave mixing based on excited state absorption
Author(s): Xinxian Bao; Chunfei Li
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Azo dye polymeric film were widely studied for real-time polarization holography and optical storage by degenerate four-wave mixing in the resonant absorption spectrum of the sample in the few past years. In this paper, we will report the experimental results of four-wave mixing based on excited-state absorption in ethyl orange doped in polyvinyl alcohol film. A He-Ne laser was used as the four-wave mixing source, and the excited light was an Ar+ beam. To explain the experimental results, a simplex four-level model of azo molecule polymeric system is built up. The dynamic process of phase conjugation signal by excited-state four- wave mixing is calculated through solving the rate equation of population in the excited-state. The theoretical analyses agree with the experimental results well. The excited-state optical storage mechanism of sample is discussed.

Paper Details

Date Published: 25 October 1996
PDF: 9 pages
Proc. SPIE 2849, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications II, (25 October 1996); doi: 10.1117/12.255497
Show Author Affiliations
Xinxian Bao, Harbin Institute of Technology (China)
Chunfei Li, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 2849:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications II
Francis T. S. Yu; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top