Share Email Print

Proceedings Paper

IR-images propagation through the turbid atmosphere
Author(s): Vladimir V. Belov; Sergei V. Afonin; Irina Y. Makushkina
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The paper discusses the salient features of the impulse response characteristics of IR channels of image transfer through the atmosphere (lambda equals 3.75 and 10.8 micrometer) obtained by solving the radiative transfer equation by the Mont-Carlo method. A distorting effect of horizontal photon diffusion on infrared images of the temperature-inhomogeneous Earth's surface recorded from space under conditions of a turbid atmosphere has been investigated. As an example, two different situations have been considered: remote measurements of the surface temperature near the dividing line between two large regions of the surface with different temperatures (for example, near a coastal line) and spaceborne detection of subpixel high-temperature sources. Results of simulation for a 3.75- micrometer channel have shown that in the first case, band zones are formed on both sides of the dividing line due to aerosol scattering, within which the measurement results may strongly depend on the geometry of observations, the value of the temperature gradient, and the degree of atmospheric turbidity. Aerosol scattering may have a marked effect on the quality of satellite data interpretation when estimating size and intensity of subpixel high-temperature sources.

Paper Details

Date Published: 14 October 1996
PDF: 12 pages
Proc. SPIE 2828, Image Propagation through the Atmosphere, (14 October 1996); doi: 10.1117/12.254189
Show Author Affiliations
Vladimir V. Belov, Institute of Atmospheric Optics (Russia)
Sergei V. Afonin, Institute of Atmospheric Optics (Russia)
Irina Y. Makushkina, Institute of Atmospheric Optics (Russia)

Published in SPIE Proceedings Vol. 2828:
Image Propagation through the Atmosphere
Christopher Dainty; Luc R. Bissonnette, Editor(s)

© SPIE. Terms of Use
Back to Top