Share Email Print
cover

Proceedings Paper • new

Research on improved image registration algorithm based on PROSAC algorithm
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In order to solve the problems of poor stability and multiple mismatching points in image registration, most scholars have used Random Sample Consensus (RANSAC) algorithm to optimize the matching algorithm. However, because of the randomness of the RANSAC algorithm itself, the matching algorithm has poor stability, low registration efficiency and poor robustness. To solve this problem, an improved SIFT (Scale-invariant feature transform) image registration optimization algorithm based on PROSAC (Progressive Sampling Consensus) was proposed. The experimental results showed that the proposed image registration optimization algorithm could effectively solve the problems of error matching and low efficiency in the process of image matching. Using the same image to test, the average correct registration rate of the traditional RANSAC improved SIFT algorithm was 82%, and the average running time was 36 seconds. The average correct registration rate of the SIFT image registration algorithm based on PROSAC improved SIFT image registration algorithm was 86.67%, the average running time was 26.51 seconds, and the running efficiency was increased by 36%. Therefore, the improved SIFT image registration algorithm based on PROSAC has higher robustness, can meet the needs of fast image mosaic, and has broad application prospects.In order to solve the problems of poor stability and multiple mismatching points in image registration, most scholars have used Random Sample Consensus (RANSAC) algorithm to optimize the matching algorithm. However, because of the randomness of the RANSAC algorithm itself, the matching algorithm has poor stability, low registration efficiency and poor robustness. To solve this problem, an improved SIFT (Scale-invariant feature transform) image registration optimization algorithm based on PROSAC (Progressive Sampling Consensus) was proposed. The experimental results showed that the proposed image registration optimization algorithm could effectively solve the problems of error matching and low efficiency in the process of image matching. Using the same image to test, the average correct registration rate of the traditional RANSAC improved SIFT algorithm was 82%, and the average running time was 36 seconds. The average correct registration rate of the SIFT image registration algorithm based on PROSAC improved SIFT image registration algorithm was 86.67%, the average running time was 26.51 seconds, and the running efficiency was increased by 36%. Therefore, the improved SIFT image registration algorithm based on PROSAC has higher robustness, can meet the needs of fast image mosaic, and has broad application prospects.

Paper Details

Date Published: 14 August 2019
PDF: 7 pages
Proc. SPIE 11179, Eleventh International Conference on Digital Image Processing (ICDIP 2019), 111792K (14 August 2019); doi: 10.1117/12.2539877
Show Author Affiliations
Xiangyu Li, China Institute of Water Resources and Hydropower Research (China)
North China Univ. of Water Resources and Electric Power (China)
Tianjie Lei, China Institute of Water Resources and Hydropower Research (China)
Chun Zhao, China Institute of Water Resources and Hydropower Research (China)
Jintao Huang, China Institute of Water Resources and Hydropower Research (China)
North China Univ. of Water Resources and Electric Power (China)
Man Yuan, China Institute of Water Resources and Hydropower Research (China)
North China Univ. of Water Resources and Electric Power (China)
Jiabao Wang, China Institute of Water Resources and Hydropower Research (China)
North China Univ. of Water Resources and Electric Power (China)


Published in SPIE Proceedings Vol. 11179:
Eleventh International Conference on Digital Image Processing (ICDIP 2019)
Jenq-Neng Hwang; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top