Share Email Print

Proceedings Paper • new

Reconstructing interior transmission tomographic images with an offset-detector using a deep-neural-network
Author(s): Hoyeon Lee; Hyeongseok Kim; Seungryong Cho
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Interior tomography that acquires truncated data of a specific interior region-of-interest (ROI) is an attractive option to low-dose imaging. However, image reconstruction from such measurement does not yield an accurate solution because of data insufficiency. There have been developed a host of approaches to getting an approximate useful solution including various weighting methods, iterative reconstruction methods, and methods with prior knowledge. In this study, we use a deep-neural-network, which has shown its potentials in various fields including medical imaging, to reconstruct interior tomographic images. We assumed an offset-detector geometry which has wide applications in cone-beam CT (CBCT) imaging for its extended field-of-view (FOV) in this work. We trained a network to synthesize ‘ramp-filtered’ data within the detector active area so that the corresponding ROI reconstruction would be truncation-artifact-free in the filteredbackprojection (FBP) reconstruction framework. We have compared the results with post- and pre-convolution weighting methods and shown outperformance of the neural network approach.

Paper Details

Date Published: 28 May 2019
PDF: 5 pages
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 1107230 (28 May 2019); doi: 10.1117/12.2534888
Show Author Affiliations
Hoyeon Lee, KAIST (Korea, Republic of)
Hyeongseok Kim, KAIST (Korea, Republic of)
Seungryong Cho, KAIST (Korea, Republic of)

Published in SPIE Proceedings Vol. 11072:
15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
Samuel Matej; Scott D. Metzler, Editor(s)

© SPIE. Terms of Use
Back to Top